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Abstract 13 

The high computational cost of chemical transport models (CTMs) is a potential bottleneck for 14 

the rapid assimilation of ozone (O3) observations. Here we developed a single tracer tagged-15 

O3 mode to build the capability of the GEOS-Chem model for rapid simulation of tropospheric 16 

O3. The tagged-O3 mode demonstrates high consistency with GEOS-Chem full-chemistry 17 

simulation and dramatic reductions in computational costs by approximately 91-94%. The 18 

tagged-O3 simulation was combined with China Ministry of Ecology and Environment (MEE) 19 

and Ozone Monitoring Instrument (OMI) O3 observations to investigate the changes in 20 

tropospheric O3 over E. Asia in 2015-2020. The assimilated O3 concentrations demonstrate 21 

good agreement with O3 observations: surface O3 concentrations are 42.9, 41.8 and 42.1 ppb; 22 

and tropospheric O3 columns are 37.1, 37.9 and 38.0 DU in the simulations, assimilations and 23 

observations, respectively. The assimilations indicate rapid increases in surface O3 by 1.60 24 

(spring), 1.16 (summer), 1.47 (autumn) and 0.80 (winter) ppb yr-1 over E. China in 2015-2020, 25 

and the increasing trends are underestimated by the a priori simulations. More attention is thus 26 

suggested to the rapid increases in O3 pollution in spring and autumn. Furthermore, we find 27 

stronger increases in tropospheric O3 columns over highly polluted areas, which may reflect 28 

the larger contributions of local emissions. The large discrepancy in the trends in tropospheric 29 

O3 columns by assimilating surface and satellite observations further indicates the possible 30 

uncertainties in the derived free tropospheric O3 changes. The rapid O3 assimilation capability 31 

https://doi.org/10.5194/gmd-2023-35
Preprint. Discussion started: 4 April 2023
c© Author(s) 2023. CC BY 4.0 License.



2 
 

is a useful tool for the extension and interpretation of atmospheric O3 observations. 32 

 33 

1. Introduction 34 

Tropospheric ozone (O3) is an important pollutant with significant adverse effects on 35 

human health and crop growth (Zhang et al., 2021; Li et al., 2022). Tropospheric O3 is produced 36 

when volatile organic compounds (VOC) and carbon monoxide (CO) are photochemically 37 

oxidized in the presence of nitrogen oxides (NOx). Chemical transport models (CTMs) are 38 

widely used to simulate tropospheric O3 variabilities (Jiang et al., 2015; Zhang et al., 2016; 39 

Xue et al., 2021). Considering the uncertainties in physical and chemical processes (Peng et 40 

al., 2021; Chen et al., 2022) and emission inventories (Elguindi et al., 2020; Jiang et al., 2022), 41 

remotely sensed O3 observations are further applied to improve the modeled O3 concentrations 42 

via data assimilation techniques (Huijnen et al., 2020; Colombi et al., 2021). In addition to 43 

satellite observations, surface stations provide valuable information for air quality by 44 

producing high-accuracy in situ measurements. For example, Ma et al. (2019) found that the 45 

assimilation of surface observations can effectively improve the predicted surface O3 46 

concentrations; Peng et al. (2018) obtained good forecasts in short-term surface O3 variabilities 47 

by assimilating surface observations. 48 

The description of O3 photochemistry in CTMs can provide useful constraints on O3 49 

concentrations in assimilations (van Peet et al., 2018; Miyazaki et al., 2020). However, the high 50 

computational cost is a potential bottleneck for rapid assimilations with high spatial resolution 51 

and wide spatial coverage, which poses a possible barrier to better understanding the long-term 52 

changes in tropospheric O3 on continental or global scales. Alternatively, people may consider 53 

simulations of atmospheric O3 with the archived O3 product and loss rates. For example, the 54 

tagged-Ox mode of the GEOS-Chem model has been used to analyze the sources and transport 55 

of tropospheric O3 (Zhang et al., 2008; Zhu et al., 2017; Han et al., 2018). However, it may not 56 

https://doi.org/10.5194/gmd-2023-35
Preprint. Discussion started: 4 April 2023
c© Author(s) 2023. CC BY 4.0 License.



3 
 

be an ideal choice to perform O3 assimilations based on the tagged-Ox mode because Ox is the 57 

combination of multiple species, including O3, and thus cannot be accurately compared with 58 

O3 observations. 59 

In this study, we developed the single tracer tagged-O3 mode of the GEOS-Chem model, 60 

driven by archived O3 product and loss rates provided by GEOS-Chem full chemistry 61 

simulations, to build the capability of the GEOS-Chem model for rapid simulations of 62 

tropospheric O3 (rather than Ox). The tagged-O3 simulation was then combined with the Ozone 63 

Monitoring Instrument (OMI) and China Ministry of Ecology and Environment (MEE) 64 

monitoring network O3 observations (in this paper) and United States (US) Air Quality System 65 

(AQS) and European AirBase network O3 observations (in the companion paper: Part 2, Zhu 66 

et al. (2023)) via a sequential Kalman Filter (KF) assimilation system (Tang et al., 2022; Han 67 

et al., 2022) to investigate the performance of single tracer simulation on O3 assimilations. 68 

Furthermore, the rapid assimilation capability based on the tagged-O3 mode allows us to 69 

perform a convenient, comparative analysis to investigate the changes in tropospheric O3 in E. 70 

China in 2015-2020 (in this paper) and the US and Europe in 2005-2020 (in the companion 71 

paper: Part 2, Zhu et al. (2023)). Considering their different vertical sensitivities, a comparative 72 

analysis by assimilating satellite and surface O3 measurements is useful for better 73 

characterization of O3 changes in the surface and free troposphere and is helpful for better 74 

applications of satellite and surface O3 measurements in the future. 75 

This paper is organized as follows: in Section 2, we describe the surface (MEE, AQS and 76 

AirBase) and OMI O3 observations, GEOS-Chem model and data assimilation system used in 77 

this work. Tropospheric O3 changes in E. China in 2015-2020 are then demonstrated in Section 78 

3 by assimilating MEE and OMI O3 observations. As shown in Fig. 1, five regions (i.e., North 79 

China Plain (#1), Yangtze River Delta (#2), Central China (#3), Sichuan Basin (#4) and 80 

Southern China (#5)) are defined within the E. China domain based on anthropogenic NOx 81 
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emissions in 2015. Regions #1 and #2 are defined as highly polluted regions by excluding grids 82 

with low and medium anthropogenic NOx emissions. Tropospheric O3 changes over these 83 

regions are discussed to investigate the possible regional discrepancies in surface and free 84 

tropospheric O3 associated with different local pollution levels. Our conclusions follow in 85 

Section 4. 86 

 87 

2. Data and Methods 88 

2.1 Surface O3 measurements 89 

We use MEE surface in situ O3 concentration data (https://quotsoft.net/air/) for the period 90 

2015-2020. These real-time monitoring stations have the ability to report hourly concentrations 91 

of criteria pollutants from over 1650 sites in 2020. Concentrations were reported by the MEE 92 

in ug m-3 under standard temperature (273 K) until 31 August 2018. This reference state was 93 

changed on 1 September 2018 to 298 K. We converted the O3 concentrations to ppb and 94 

rescaled the post-August 2018 concentrations to the standard temperature (273 K) to maintain 95 

consistency in the trend analysis. In addition, in situ hourly surface O3 measurements from the 96 

US AQS and European Environment Agency AirBase networks are used in the companion 97 

paper (Part 2, Zhu et al. (2023)). The AQS and AirBase networks collect ambient air pollution 98 

data from monitoring stations located in urban, suburban, and rural areas. We only considered 99 

stations with at least 14 years of observation records in 2005-2020. 100 

2.2 OMI PROFOZ product 101 

The OMI instrument was launched in July 2004 on the Aura spacecraft with a spatial 102 

resolution of 13◊ 24 km (nadir view). It provides global covered measurements with 103 

backscattered sunlight in the ultraviolet‒visible range from 270 to 500 nm (UV1: 270–310 nm; 104 

UV2: 310–365 nm; visible: 350–500 nm). In this study, we use the OMI O3 profile retrieval 105 

product (PROFOZ v0.9.3, level 2, Liu et al., 2010; Huang et al., 2017) from the Smithsonian 106 
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Astrophysical Observatory (SAO). The retrieval uses the vector linearized discrete ordinate 107 

radiative transfer model (VLIDORT) (Spurr, 2006) and Bayesian optimal estimation. Profiles 108 

of partial O3 columns (unit: DU) are retrieved in the spectral region 270–330 nm with 24 109 

vertical layers: approximately 2.5 km for each layer from the surface to approximately 60 km. 110 

The following filters are applied in our analysis following Huang et al. (2017): 1) nearly 111 

clear-sky scenes with effective cloud fraction < 0.3; 2) solar zenith angles (SZA) < 75°; and 3) 112 

fitting root mean square (RMS, ratio of fitting residuals to assumed measurement error) < 2.0. 113 

Starting in 2009, anomalies were found in OMI data and diagnosed as attenuated measured 114 

radiances in certain cross-track positions. This instrument degradation has been referred to as 115 

the “row anomaly”. To enhance the quality and stability of data, only across-track positions 116 

between 4-11 (within 30 positions in the UV1 channels) are used in our analysis. This treatment 117 

is similar to the production of row-isolated data by using across-track positions between 3-18 118 

(within 60 positions in the UV2 channels) in the OMI/MLS O3 data (Ziemke et al., 2019; Wang 119 

et al., 2022). 120 

The modeled tropospheric O3 profiles in the assimilation processes and subsequent 121 

analyses are convolved by using the OMI retrieval averaging kernels and a priori O3 profile 122 

based on the following equation: 123 

�̂� =  𝒙a + 𝐀(𝒙 −  𝒙a)    (Eq.1) 124 

where �̂� is the modeled O3 profile convolved by the retrieval averaging kernels, 𝒙𝑎 is the 125 

OMI a priori O3 profile, 𝒙 is the modeled O3 profile, and 𝐀 is the OMI averaging kernel 126 

matrix. Here A(i, j) =  
∂𝑥𝑗

∂𝑥𝑖
, representing the sensitivity of the retrieved partial O3 column (DU) 127 

at layer j to the change in O3 (DU) at layer i. The unit for averaging kernels in this OMI product 128 

is DU/DU and does not cancel out because the conversion from DU to ppb varies with altitude. 129 

2.3 GEOS-Chem model configuration 130 

https://doi.org/10.5194/gmd-2023-35
Preprint. Discussion started: 4 April 2023
c© Author(s) 2023. CC BY 4.0 License.



6 
 

The GEOS-Chem chemical transport model (http://www.geos-chem.org, version 12-8-1) 131 

is driven by assimilated meteorological data of MERRA-2. The GEOS-Chem full-chemistry 132 

simulation includes fully coupled O3-NOx-VOC-halogen-aerosol chemistry. Our analysis is 133 

conducted at a horizontal resolution of nested 0.5°×0.625° over China, the US and Europe with 134 

chemical boundary conditions archived every 3 hours from global simulations with 4°×5° 135 

resolution. Emissions are computed by the Harvard-NASA Emission Component (HEMCO). 136 

Global default anthropogenic emissions are from the CEDS (Community Emissions Data 137 

System) (Hoesly et al., 2018). Regional emissions are replaced by MEIC (Multiresolution 138 

Emission Inventory for China) in China, MIX in other regions of Asia (Li et al., 2017) and 139 

NEI2011 in the US. Open fire emissions are from the Global Fire Emissions Database (GFED4) 140 

(van der Werf et al., 2010). 141 

Following Jiang et al. (2022), the total anthropogenic NOx and VOC emissions in the 142 

GEOS-Chem model are scaled with the corresponding bottom-up inventories (MEIC for China, 143 

NEI2014 for the US, and ECLIPSE for Europe) so that the modeled surface nitrogen dioxide 144 

(NO2) and O3 concentrations in the a priori simulations are identical to Jiang et al. (2022) in 145 

2005-2018. The total anthropogenic NOx and VOC emissions in 2019-2020 in China, the US 146 

and Europe are further scaled based on linear projections. The total anthropogenic NOx 147 

emissions in the a priori simulations declined by 53% (US) and 50% (Europe) in 2005-2020 148 

and by 19% (China) in 2015-2020. The total anthropogenic VOC emissions in the a priori 149 

simulations declined by 19% (US) and 33% (Europe) in 2005-2020 and increased by 1% 150 

(China) in 2015-2020. We refer the reader to Jiang et al. (2022) for the details of the model 151 

configuration and performance, particularly the modeled trends of surface and tropospheric 152 

column NO2 in 2005-2018. 153 

2.4 Data assimilation approach 154 
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We employ the sequential KF to assimilate O3 observations, which has been used in 155 

recent studies to optimize tropospheric CO concentrations (Tang et al., 2022; Han et al., 2022). 156 

As a brief description of the assimilation algorithm, the forward model (M) predicts the O3 157 

concentration (𝒙at) at time t: 158 

𝒙at =  𝐌𝑡𝒙𝑡−1     (Eq. 2) 159 

The optimized O3 concentrations can be expressed as: 160 

𝒙𝑡 =  𝒙at +  𝐆𝑡(𝒚𝑡 −  𝐊𝑡𝒙at)     (Eq. 3) 161 

where 𝒚𝑡 is the observation and 𝐊𝑡 represents the operation operator that projects O3 162 

concentrations from the model space to the observation space. 𝐆𝑡  is the KF gain matrix, which 163 

can be described as: 164 

 𝐆𝑡 =  𝐒at𝐊𝑡
𝑇(𝐊𝑡𝐒at𝐊𝑡

𝑇 +  𝐒ϵ)−1     (Eq. 4) 165 

where 𝐒at  and 𝐒ϵ are the model and observation covariances, respectively. The optimized O3 166 

concentrations provided by Eq. 3 are then forwarded (hourly) to Eq. 2. The model errors are 167 

assumed to be 50%. The measurement errors are calculated as 𝜀0 = ermax + 0.0075 * 𝛱0, 168 

where ermax is the base error (1.5 µg m-3) and 𝛱0 represents the observed O3 concentrations 169 

(unit: µg m-3). The representation errors are calculated as 𝜀𝑟 = γ𝜀0√𝛥𝑙/𝐿, where γ is a scaling 170 

factor (0.5), 𝛥𝑙 is the model resolution (~56 km in this study), and L represents the range that 171 

the observation can reflect, which depends on the station type (2 km for urban, 4 km for 172 

suburban). The total observation error is then defined as 𝜀𝑡 = √𝜀0
2 + 𝜀𝑟

2. Following Tang et 173 

al. (2022), grid-based superobservations (0.5°×0.625°) were created to reduce the influence of 174 

representative errors.  175 

 176 

3. Results and Discussion 177 

3.1 GEOS-Chem tagged-O3 simulation 178 

A new chemical mechanism was developed in this work to allow the running of the single 179 
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tracer tagged-O3 mode. As shown in Fig. S1 (see the SI), the package of the Kinetic 180 

PreProcessor (KPP) module was modified to define the production (PO3) and loss (LO3) of 181 

O3. The GEOS-Chem full-chemistry simulations with the updated KPP module were then 182 

performed to produce PO3 and LO3 every 20 minutes. Here the 20 minutes is selected to be 183 

the same as the chemical time step in GEOS-Chem full-chemistry mode to ensure consistency 184 

between tagged-O3 and full chemistry simulations. Finally, the single tracer tagged-O3 mode 185 

(tagged_o3_mod.F90) was performed by reading the archived PO3 and LO3 provided by the 186 

full-chemistry simulations. Because we are interested in tropospheric chemistry, we archived 187 

O3 concentrations instead of O3 production and loss rates in the stratosphere in the full 188 

chemistry simulations. The archived stratospheric O3 concentrations were read in the tagged-189 

O3 simulation process as boundary conditions to ensure a reasonable stratospheric-tropospheric 190 

O3 exchange. 191 

Why is tagged-O3 simulation useful if we must run the full-chemistry simulation first to 192 

produce PO3 and LO3? Table 1 shows the computation costs (hours of wall time per simulation 193 

year) by different GEOS-Chem simulation types in this work. We find 91%-94% reductions in 194 

the computation costs with respect to full-chemistry simulations: 57.5 and 5.2 hours at the 195 

global scale (4°×5°), 80.2 and 4.5 hours within the nested China domain (0.5°×0.625°), 160.7 196 

and 9.4 hours within the nested US domain (0.5°×0.625°) and 103.4 and 6 hours within the 197 

nested Europe domain (0.5°×0.625°) by full chemistry and tagged-O3 modes, respectively. 198 

Consequently, once the PO3 and LO3 are produced, the additional computational costs of 199 

performing tagged-O3 simulation are almost negligible. The low computational costs of the 200 

tagged-O3 simulation allow us to design and perform different assimilation experiments much 201 

more efficiently. 202 

Here we evaluate the consistency in modeled O3 concentrations between tagged-O3 and 203 

full-chemistry simulations. Fig. 2A-E show the annual and seasonal averages of surface 204 
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maximum daily 8-hour average (MDA8) O3 over E. China in 2015-2020 from the full-205 

chemistry simulation. The modeled surface MDA8 O3 concentrations are as high as 60-70 ppb 206 

in the summer and as low as 10-20 ppb in the winter over northern China. The simulation with 207 

the tagged-O3 mode (Fig. 2F-J) demonstrates spatial consistency with the full-chemistry 208 

simulation (Fig. 2A-E) and temporal consistency at both the daily (Fig. 3A) and monthly (Fig. 209 

3B) scales in 2015-2020. In contrast, there are large discrepancies between full-chemistry (Fig. 210 

2A-E) and tagged-Ox (Fig. 2K-O) simulations. As shown in Fig. 3, the Ox concentrations are 211 

higher than the O3 concentrations by approximately 6 ppb, and the relative difference can reach 212 

40% in the winter. Similarly, Fig. S2 (see the SI) shows the annual and seasonal averages of 213 

surface MDA8 O3 over the US and Europe in 2005-2020 from the full-chemistry and tagged-214 

O3 simulations. Similar to China, we find good spatial (Fig. S2) and temporal (Fig. S3, see the 215 

SI) consistencies in surface MDA8 O3 between tagged-O3 and full-chemistry simulations over 216 

the US and Europe in 2005-2020. Our analysis thus indicates the reliability of the tagged-O3 217 

simulations developed in this work. 218 

3.2 Surface O3 by assimilating MEE O3 observations 219 

We first investigate the effects of surface O3 observations on the tagged-O3-based 220 

assimilations. O3 at the surface level is formed by precursors mixed in the planetary boundary 221 

layer (PBL). Thus, it may not be accurate to assume that the differences between simulated and 222 

observed surface O3 concentrations are completely caused by biased O3 production and loss at 223 

the surface level. Here we adjust O3 concentrations at all levels within the PBL when 224 

assimilating surface O3 observations: 225 

∆𝑂3
𝑙 =  ∆𝑂3

1 × 0.8𝑙−1   (Eq. 5) 226 

where ∆𝑂3
1 is the adjustment at the surface level calculated with Eq. 3; ∆𝑂3

𝑙  is the adjustment 227 

at model level l, which is based on ∆𝑂3
1 but decays exponentially with the increase in model 228 

level. We note that Eq. 5 is defined empirically, as we find that the assimilated O3 matches 229 
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better with surface O3 observations. More efforts are needed in the future to evaluate the 230 

reliability of this empirical method.  231 

Fig. 4A-E show the annual and seasonal averages of surface MDA8 O3 observations from 232 

MEE stations in 2015-2020. Fig. 4K-O further show the annual and seasonal averages of the a 233 

posteriori O3 concentrations by assimilating the MEE O3 observations. As shown in Fig. 5, the 234 

assimilated O3 concentrations (blue lines) show good agreements with MEE O3 observations 235 

(red lines): the mean surface MDA8 O3 in 2015-2020 are 42.9, 41.8 and 42.1 ppb (E. China), 236 

42.3, 45.6 and 47.6 ppb (North China Plain), 44.5, 45.0 and 44.9 ppb (Yangtze River Delta), 237 

44.7, 43.1 and 43.5 ppb (Central China), 45.3, 37.5 and 36.9 ppb (Sichuan Basin), and 43.0, 238 

39.2 and 38.3 ppb (Southern China) in the a priori simulations, a posteriori simulations and 239 

MEE observations, respectively. As we expected, MDA8 O3 concentrations are higher over 240 

areas with higher anthropogenic NOx emissions, for example, 45.6 and 45.0 ppb in the North 241 

China Plain and Yangtze River Delta, respectively, in contrast to 43.1, 37.5 and 39.2 ppb in 242 

Central China, Sichuan Basin and Southern China, respectively. 243 

As shown in Fig. 5A, there are good agreements between the a priori and a posteriori O3 244 

concentrations over E. China except a larger difference in the summer. However, as shown in 245 

Fig. 4P-T, the good agreements between the a priori and a posteriori O3 concentrations are 246 

caused by the counterbalance of positive biases (i.e., overestimated surface O3 in the a priori 247 

simulations over southern China) and negative biases (i.e., underestimated surface O3 in the a 248 

priori simulations over northern China). The good agreements in Fig. 5A thus cannot represent 249 

good performance in the simulations of surface O3 concentrations. Furthermore, surface O3 250 

concentrations are maximum in June in the North China Plain, May and August in the Yangtze 251 

River Delta, Central China and Sichuan Basin, September-October in Southern China (Fig. 5). 252 

The assimilations exhibit noticeable declines in surface O3 concentrations over regions #2-5 in 253 

June-July, and the declines are underestimated by the a priori simulations. The inaccurate 254 
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simulations of surface O3 concentrations in June-July thus result in overestimated surface O3 255 

concentrations in the summer. 256 

3.3 Rapid increasing trends in surface O3 concentrations 257 

Here we further investigate the changes in surface O3 concentrations from observations 258 

and assimilations. As shown in Fig. 6F-J, the a priori simulation suggests slightly increasing 259 

trends of MDA8 O3 in 2015-2020: 0.27 (spring), -0.23 (summer), 0.41 (autumn) and 0.40 260 

(winter) ppb yr-1, and the relative increasing trends are 0.6 (spring), -0.4 (summer), 1.0 261 

(autumn) and 1.4 (winter) % yr-1. The a priori simulation suggests increasing trends of surface 262 

O3 concentrations in the summer over areas with higher local pollution levels, for example, 263 

0.61 and 0.58 ppb yr-1 over the North China Plain and Yangtze River Delta, respectively, and 264 

decreasing trends of surface O3 concentrations in the summer over areas with lower local 265 

pollution levels, for example, -0.10, -1.01 and -1.06 ppb yr-1 over Central China, Sichuan Basin 266 

and Southern China, respectively. The decreasing trends over areas with lower local pollution 267 

levels in the simulations are not surprising, given the decreases in anthropogenic NOx 268 

emissions (Zheng et al., 2018; Jiang et al., 2022) and the reported NOx-limited O3 nonlinear 269 

chemical regimes in model simulations (Chen et al., 2021; Liu et al., 2021). 270 

In contrast, the increasing trends in surface O3 are much stronger in the assimilations. As 271 

shown in Table 2.1, our assimilation suggests 1.60 (spring), 1.16 (summer), 1.47 (autumn) and 272 

0.80 (winter) ppb yr-1 increases in surface O3 over E. China in 2015-2020, and the relative 273 

increasing trends are 3.4 (spring), 2.2 (summer), 3.7 (autumn) and 2.7 (winter) % yr-1. The 274 

increasing trends are weaker when the modeled surface O3 concentrations are averaged over E. 275 

China (Table 2.2) instead of sampling at the locations and times of MEE observations: 0.71 276 

(spring), 0.36 (summer), 0.69 (autumn) and 0.54 (winter) ppb yr-1 because most MEE stations 277 

are urban sites. Our analysis thus indicates a noticeable underestimation in the increasing trends 278 

of surface O3 concentrations in China in the a priori simulations, particularly in the summer, 279 
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despite the anthropogenic NOx and VOC emissions having been scaled in the simulations 280 

following Jiang et al. (2022). 281 

The changes in surface O3 concentrations have significant regional and seasonal 282 

discrepancies. As shown in Tables S1-S5 (see the SI), our assimilations demonstrate strong 283 

increasing trends in surface O3 concentrations in 2015-2020 in the spring (1.94 ppb yr-1 or 3.8% 284 

yr-1) and summer (2.52 ppb yr-1 or 4.0% yr-1) over the North China Plain; in the spring (2.21 285 

ppb yr-1 or 4.4% yr-1) and autumn (1.84 ppb yr-1 or 4.1% yr-1) over the Yangtze River Delta; in 286 

the spring (2.07 ppb yr-1 or 4.3% yr-1) and autumn (2.09 ppb yr-1 or 4.7% yr-1) over Central 287 

China; in the spring (1.69 ppb yr-1 or 3.8% yr-1) over the Sichuan Basin; and in the autumn 288 

(2.21 ppb yr-1 or 4.9% yr-1) over Southern China. While surface O3 concentrations are higher 289 

over areas with higher anthropogenic NOx emissions, the increasing trends in surface O3 290 

concentrations over Central China and Southern China are comparable with those in the North 291 

China Plain and Yangtze River Delta. Our analysis advises more attention to O3 pollution in 292 

spring and autumn over areas with lower anthropogenic NOx emissions because of the rapid 293 

increases in surface O3 concentrations. 294 

3.4 Tropospheric O3 columns by assimilating OMI O3 observations 295 

Fig. 7A-E show the annual and seasonal averages of tropospheric OMI O3 columns in 296 

2015-2020. OMI is sensitive to O3 at different vertical levels (Huang et al., 2017; Fu et al., 297 

2018), and thus, the standard KF algorithm (Eq. 3) was employed to adjust tropospheric O3 298 

vertical profiles with the application of OMI O3 averaging kernels. Fig. 7K-O show the annual 299 

and seasonal averages of the a posteriori tropospheric O3 columns by assimilating OMI O3 300 

observations. The assimilated tropospheric O3 columns show good agreement with OMI O3 301 

observations: the mean tropospheric O3 columns in 2015-2020 (Table 2.3) are 37.1 DU in the 302 

a priori simulations, and 37.9 and 38.0 DU in the a posteriori simulation and OMI observations, 303 

respectively. Furthermore, as shown in Fig. 8, the trends of tropospheric O3 columns in 2015-304 
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2020 (Table 2.3) are 0.02 DU yr-1 in the a priori simulations, and -0.17 and -0.30 DU yr-1 in 305 

the a posteriori simulation and OMI observations, respectively. 306 

The discrepancies between the a priori and a posteriori tropospheric O3 columns by 307 

assimilating OMI O3 observations (Fig. 7) are smaller than those in surface O3 concentrations 308 

(Fig. 4). A better simulation capability in tropospheric column O3 is expected because model 309 

simulation with 0.5°×0.625° horizontal resolution may not be enough to accurately resolve O3 310 

nonlinear chemical regimes over urban surface stations. Furthermore, in contrast to the wide 311 

distributions of increasing trends of O3 at the surface level (Fig. 6), both OMI O3 observations 312 

(-0.30 DU yr-1) and the OMI-based assimilations (-0.17 DU yr-1) suggest decreasing trends in 313 

tropospheric O3 columns over E. Asia in 2015-2020 (Fig. 8). The decreasing trends are stronger 314 

in the summer and weaker in the spring. However, the trends shown in Fig. 8 may not represent 315 

the actual tropospheric O3 changes well because the convolution of OMI O3 averaging kernels 316 

on the output O3 profiles can affect the weights of the derived tropospheric columns to O3 at 317 

different vertical levels. 318 

Consequently, Fig. 9 further shows the annual and seasonal averages of tropospheric O3 319 

columns from a priori and a posteriori simulations, in which the output O3 profiles are not 320 

convolved with OMI retrieval averaging kernels so that they can better represent the actual 321 

atmospheric O3 state. As shown in Fig. 10, the assimilated tropospheric O3 columns are 37.2 322 

and 38.8 DU (E. China), 41.4 and 43.7 DU (North China Plain), 46.0 and 48.1 DU (Yangtze 323 

River Delta), 45.9 and 48.1 DU (Central China), 42.6 and 44.6 DU (Sichuan Basin), 38.8 and 324 

40.6 DU (Southern China) in 2015-2020 by assimilating MEE and OMI O3 observations, 325 

respectively. In contrast to the higher surface MDA8 O3 concentrations over areas with higher 326 

anthropogenic NOx emissions, tropospheric O3 columns over Central China and the Sichuan 327 

Basin are even higher than those over the highly polluted North China Plain. In addition, 328 

tropospheric O3 columns by assimilating MEE surface O3 observations are lower than those by 329 
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assimilating OMI O3 observations, and their difference is larger in the summer and smaller in 330 

the winter. 331 

The assimilated tropospheric O3 columns are maximum in June-July in North China Plain 332 

(Fig. 10). However, the assimilated tropospheric O3 columns are maximum in March-May over 333 

other regions that are dramatically different with surface O3 (Fig. 5). The similar seasonality 334 

between surface and free tropospheric O3 over highly polluted North China Plain reflects the 335 

impact of local emissions. The different seasonality over other regions may represent the 336 

contributions from free tropospheric O3 transport. While the Yangtze River Delta is defined as 337 

a highly polluted region, its area is much smaller than North China Plain (Fig. 1) and thus the 338 

impact of local emissions on tropospheric O3 columns over the Yangtze River Delta may not 339 

be as strong as the North China Plain. Furthermore, as shown in Fig. 11, the impacts of different 340 

surface and satellite O3 observations on the assimilated O3 vertical profiles are limited. The 341 

assimilation of MEE surface O3 observations leads to decreases in O3 concentrations in the 342 

lower troposphere from the surface to 600 hPa levels over the Sichuan Basin and Southern 343 

China; the assimilation of OMI O3 observations leads to enhancement in O3 concentrations in 344 

the middle and upper troposphere over the highly polluted North China Plain. 345 

As shown in Fig. 12, the trends of tropospheric O3 columns in 2015-2020 are 0.06, 0.25 346 

and -0.10 DU yr-1 (E. China), 0.26, 0.66 and 0.12 DU yr-1 (North China Plain), 0.28, 0.60 and 347 

0.13 DU yr-1 (Yangtze River Delta), 0.09, 0.46 and -0.06 DU yr-1 (Central China), -0.14, 0.17 348 

and -0.29 DU yr-1 (Sichuan Basin), -0.08, 0.15 and -0.25 DU yr-1 (Southern China) in the a 349 

priori simulations and a posteriori simulations by assimilating MEE and OMI O3 observations, 350 

respectively. The higher positive trends by assimilating MEE observations are expected, given 351 

the increasing trends in surface O3 concentrations (1.77 ppb yr-1) and decreasing trends in OMI 352 

O3 concentrations (-0.30 DU yr-1) over E. China. The stronger increasing trends in free 353 

tropospheric O3 over the highly polluted North China Plain and Yangtze River Delta may 354 
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reflect the larger contributions of local emissions to tropospheric O3 columns over highly 355 

polluted areas, and the increasing trends are stronger in autumn and winter. The large 356 

discrepancy between assimilations by assimilating surface and satellite observations further 357 

indicates the possible uncertainties in the derived free tropospheric O3 changes. Assimilations 358 

of both surface and satellite observations, as shown in this work, are thus expected to provide 359 

more information to better describe the changes in free tropospheric O3. 360 

4. Conclusion 361 

The single tracer tagged-O3 mode was developed in this work to build the capability of 362 

the GEOS-Chem model for rapid simulations of tropospheric O3. The tagged-O3 mode 363 

demonstrates high consistency with GEOS-Chem full-chemistry simulation. In contrast, the Ox 364 

concentrations provided by the tagged-Ox mode are higher than the O3 concentrations by 365 

approximately 6 ppb, and the relative difference can reach 40% in the winter. The 366 

computational costs of the tagged-O3 mode are reduced by approximately 91-94% with respect 367 

to the full-chemistry mode. For example, the computational costs (hours of wall time per 368 

simulation year) are 57.5 and 5.2 hours at the global scale (4°×5°), 80.2 and 4.5 hours within 369 

the nested China domain (0.5°×0.625°), 160.7 and 9.4 hours within the nested US domain 370 

(0.5°×0.625°) and 103.4 and 6 hours within the nested Europe domain (0.5°×0.625°) by full 371 

chemistry and tagged-O3 simulations, respectively. The low computational costs of the tagged-372 

O3 simulation thus allow us to design and perform different assimilation experiments much 373 

more efficiently. 374 

The tagged-O3 simulation was combined with MEE and OMI O3 observations to 375 

investigate the changes in tropospheric O3 over E. Asia in 2015-2020. The assimilated O3 376 

concentrations demonstrate good agreement with O3 observations: surface O3 concentrations 377 

are 42.9, 41.8 and 42.1 ppb over E. China in a priori and a posteriori simulations and MEE O3 378 

observations, respectively; tropospheric O3 columns are 37.1, 37.9 and 38.0 DU over E. China 379 
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in a priori and a posteriori simulations (convolved with OMI retrieval averaging kernels) and 380 

OMI O3 observations, respectively. We find noticeable biases in modeled surface O3 381 

concentrations, for example, overestimated surface O3 over southern China and underestimated 382 

surface O3 over northern China. The assimilations indicate rapidly increasing trends of surface 383 

O3 concentrations by 1.60 (spring), 1.16 (summer), 1.47 (autumn) and 0.80 (winter) ppb yr-1 384 

over E. China in 2015-2020, and the increasing trends are underestimated by the a priori 385 

simulations. While surface O3 concentrations are higher over areas with higher anthropogenic 386 

NOx emissions, we find that the increasing trends in surface O3 concentrations over Central 387 

China and Southern China are comparable with those in the North China Plain and Yangtze 388 

River Delta. Our analysis thus advises more attention to O3 pollution in spring and autumn over 389 

areas with lower anthropogenic NOx emissions because of the rapid increases in surface O3 390 

concentrations. 391 

Furthermore, the trends in assimilated tropospheric O3 columns in 2015-2020 are 0.25 392 

and -0.10 DU yr-1 (E. China), 0.66 and 0.12 DU yr-1 (North China Plain), 0.60 and 0.13 DU yr-393 

1 (Yangtze River Delta), 0.46 and -0.06 DU yr-1 (Central China), 0.17 and -0.29 DU yr-1 394 

(Sichuan Basin), 0.15 and -0.25 DU yr-1 (Southern China) by assimilating MEE surface and 395 

OMI O3 observations, respectively. The stronger increasing trends in tropospheric O3 columns 396 

over the highly polluted North China Plain and Yangtze River Delta may reflect the larger 397 

contributions of local emissions to tropospheric O3 columns over highly polluted areas. The 398 

large discrepancy between assimilations by assimilating surface and satellite observations 399 

further indicates the possible uncertainties in the derived free tropospheric O3 changes. This 400 

work demonstrates the importance of data assimilation techniques to provide extension and 401 

interpretation of O3 observations. 402 

 403 
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Table and Figures 428 

Table 1. Computation costs (hours of wall time) by different GEOS-Chem simulation types. 429 
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 430 

Table 2. Averages (with units ppb or DU) and trends (with units ppb yr-1 or DU yr-1) of surface 431 

and tropospheric column O3 concentrations in 2015-2020 over E. China from observations 432 

(MEE and OMI) and a priori and a posteriori (KF) simulations. T2.1): the modeled surface O3 433 

is sampled at the locations and times of MEE surface O3 observations; T2.2): the modeled 434 

surface O3 is averaged over E. China (land only); T2.3): the output O3 profiles from the a priori 435 

and a posteriori simulations are convolved with OMI O3 averaging kernels; T2.4): the output 436 

O3 profiles are NOT convolved with OMI O3 averaging kernels. 437 

 438 

Fig. 1. (a) Anthropogenic NOx emissions over E. China in 2015; (b) Region definitions for the 439 

North China Plain (#1), Yangtze River Delta (#2), Central China (#3), Sichuan Basin (#4) and 440 

Southern China (#5). The different colors (red, gray and green) represent grids with high 441 

(highest 15%), medium (15-50%) and low (lowest 50%) anthropogenic NOx emissions. 442 

Regions #1 and #2 are defined as highly polluted (HP) regions by excluding grids with low and 443 

medium anthropogenic NOx emissions. 444 

 445 

Fig. 2. Surface MDA8 O3 in 2015-2020 (annual and seasonal averages) simulated by GEOS-446 

Chem model with (A-E) full chemistry mode; (F-J) tagged-O3 mode; and (K-O) tagged-Ox 447 

mode. The 8-hour range of surface Ox is selected according to the time range of MDA8 O3. 448 

 449 

Fig. 3. (A) Daily averages of surface MDA8 O3 over E. China in 2015-2020 from GEOS-Chem 450 

full chemistry (black), tagged-O3 (blue) and tagged-Ox (red) simulations; (B) Monthly averages 451 

of MDA8 O3. The dashed lines in panel B are annual averages. 452 

 453 

Fig. 4. Surface MDA8 O3 in 2015-2020 (annual and seasonal averages) from (A-E) MEE 454 

stations; (F-J) GEOS-Chem a priori simulation; (K-O) GEOS-Chem a posteriori simulation by 455 

assimilating MEE O3 observations. (P-T) bias in the a priori simulations calculated by a 456 

posteriori minus a priori O3 concentrations. 457 

 458 

Fig. 5. (A-F) Daily averages of surface MDA8 O3 in 2015-2020 from MEE stations (red) and 459 

GEOS-Chem a priori (black) and a posteriori (blue) simulations by assimilating MEE O3 460 

observations. (G-L) Monthly averages of MDA8 O3. The dashed lines in panels G-L are annual 461 

averages. 462 

 463 
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Fig. 6. Trends of surface MDA8 O3 in 2015-2020 (annual and seasonal averages) from (A-E) 464 

MEE stations; (F-J) GEOS-Chem a priori simulation; (K-O) GEOS-Chem a posteriori 465 

simulation by assimilating MEE O3 observations. 466 

 467 

Fig. 7. Tropospheric O3 columns in 2015-2020 (annual and seasonal averages) from (A-E) 468 

OMI observations; (F-J) GEOS-Chem a priori simulation; (K-O) GEOS-Chem a posteriori 469 

simulation by assimilating OMI O3 observations. (P-T) bias in the a priori simulations 470 

calculated by a posteriori minus a priori tropospheric O3 columns. The output O3 profiles are 471 

convolved with OMI averaging kernels. 472 

 473 

Fig. 8. Trends of tropospheric O3 columns in 2015-2020 (annual and seasonal averages) from 474 

(A-E) OMI observations; (F-J) GEOS-Chem a priori simulation; (K-O) GEOS-Chem a 475 

posteriori simulation by assimilating OMI O3 observations. The output O3 profiles are 476 

convolved with OMI averaging kernels. 477 

 478 

Fig. 9. Tropospheric O3 columns in 2015-2020 (annual and seasonal averages) from (A-E) 479 

GEOS-Chem a priori simulation; (F-J) assimilations of MEE surface O3 observations; (K-O) 480 

assimilations of OMI O3 observations. (P-T) difference in tropospheric O3 columns calculated 481 

by OMI-based assimilations minus MEE-based assimilations. 482 

 483 

Fig. 10. (A-F) Daily averages of tropospheric O3 columns in 2015-2020 from GEOS-Chem a 484 

priori simulation (black) and a posteriori simulations by assimilating MEE (blue) and OMI 485 

(red) O3 observations. (G-L) Monthly averages of tropospheric O3 columns. The dashed lines 486 

in panels G-L are annual averages. 487 

 488 

Fig. 11. Averages of O3 vertical profiles in 2015-2020 from GEOS-Chem a priori (black) and 489 

a posteriori simulations by assimilating MEE (blue) and OMI (red) O3 observations. 490 

 491 

Fig. 12. Trends of tropospheric O3 columns in 2015-2020 (annual and seasonal averages) from 492 

(A-E) GEOS-Chem a priori simulation; (F-J) assimilations of MEE surface O3 observations; 493 

(K-O) assimilations of OMI O3 observations. 494 

 495 
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Table. 1. Computation costs (hours of wall time) by different GEOS-Chem simulation types. 

 

 

 

 

 

 

Table. 2. Averages (with units ppb or DU) and trends (with units ppb yr-1 or DU yr-1) of surface 

and tropospheric column O3 concentrations in 2015-2020 over E. China from observations 

(MEE and OMI) and a priori and a posteriori (KF) simulations. T2.1): the modeled surface O3 

is sampled at the locations and times of MEE surface O3 observations; T2.2): the modeled 

surface O3 is averaged over E. China (land only); T2.3): the output O3 profiles from the a priori 

and a posteriori simulations are convolved with OMI O3 averaging kernels; T2.4): the output 

O3 profiles are NOT convolved with OMI O3 averaging kernels. 
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Fig. 1. Anthropogenic NOx emissions over E. China in 2015; (b) Region definitions for the 

North China Plain (#1), Yangtze River Delta (#2), Central China (#3), Sichuan Basin (#4) and 

Southern China (#5). The different colors (red, gray and green) represent grids with high 

(highest 15%), medium (15-50%) and low (lowest 50%) anthropogenic NOx emissions. 

Regions #1 and #2 are defined as highly polluted (HP) regions by excluding grids with low and 

medium anthropogenic NOx emissions. 
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Fig. 2. Surface MDA8 O3 in 2015-2020 (annual and seasonal averages) simulated by GEOS-

Chem model with (A-E) full chemistry mode; (F-J) tagged-O3 mode; and (K-O) tagged-Ox 

mode. The 8-hour range of surface Ox is selected according to the time range of MDA8 O3. 

 

Fig. 3. (A) Daily averages of surface MDA8 O3 over E. China in 2015-2020 from GEOS-Chem 

full chemistry (black), tagged-O3 (blue) and tagged-Ox (red) simulations; (B) Monthly averages 

of MDA8 O3. The dashed lines in panel B are annual averages. 
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Fig. 4. Surface MDA8 O3 in 2015-2020 (annual and seasonal averages) from (A-E) MEE 

stations; (F-J) GEOS-Chem a priori simulation; (K-O) GEOS-Chem a posteriori simulation by 

assimilating MEE O3 observations. (P-T) bias in the a priori simulations calculated by a priori 

minus a posteriori O3 concentrations. 
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Fig. 5. (A-F) Daily averages of surface MDA8 O3 in 2015-2020 from MEE stations (red) and 

GEOS-Chem a priori (black) and a posteriori (blue) simulations by assimilating MEE O3 

observations. (G-L) Monthly averages of MDA8 O3. The dashed lines in panels G-L are annual 

averages. 
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Fig. 6. Trends of surface MDA8 O3 in 2015-2020 (annual and seasonal averages) from (A-E) 

MEE stations; (F-J) GEOS-Chem a priori simulation; (K-O) GEOS-Chem a posteriori 

simulation by assimilating MEE O3 observations. 
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Fig. 7. Tropospheric O3 columns in 2015-2020 (annual and seasonal averages) from (A-E) OMI 

observations; (F-J) GEOS-Chem a priori simulation; (K-O) GEOS-Chem a posteriori 

simulation by assimilating OMI O3 observations. (P-T) bias in the a priori simulations 

calculated by a priori minus a posteriori tropospheric O3 columns. The output O3 profiles are 

convolved with OMI averaging kernels. 
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Fig. 8. Trends of tropospheric O3 columns in 2015-2020 (annual and seasonal averages) from 

(A-E) OMI observations; (F-J) GEOS-Chem a priori simulation; (K-O) GEOS-Chem a 

posteriori simulation by assimilating OMI O3 observations. The output O3 profiles are 

convolved with OMI averaging kernels. 
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Fig. 9. Tropospheric O3 columns in 2015-2020 (annual and seasonal averages) from (A-E) 

GEOS-Chem a priori simulation; (F-J) assimilations of MEE surface O3 observations; (K-O) 

assimilations of OMI O3 observations. (P-T) difference in tropospheric O3 columns calculated 

by OMI-based assimilations minus MEE-based assimilations. 
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Fig. 10. (A-F) Daily averages of tropospheric O3 columns in 2015-2020 from GEOS-Chem a 

priori simulation (black) and a posteriori simulations by assimilating MEE (blue) and OMI (red) 

O3 observations. (G-L) Monthly averages of tropospheric O3 columns. The dashed lines in 

panels G-L are annual averages. 
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Fig. 11. Averages of O3 vertical profiles in 2015-2020 from GEOS-Chem a priori (black) and 

a posteriori simulations by assimilating MEE (blue) and OMI (red) O3 observations. 

 

Fig. 12. Trends of tropospheric O3 columns in 2015-2020 (annual and seasonal averages) from 

(A-E) GEOS-Chem a priori simulation; (F-J) assimilations of MEE surface O3 observations; 

(K-O) assimilations of OMI O3 observations. 
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